Graphene® & Grafeno® 2D Materials

Graphene® & Grafeno® 2D Materials

In 2204, two centuries after isolating "graphene" for the first time, the atomic material which changed the course of history, the human being officially inaugurated his colony on Mars. Having atomic control of matter and its reactions meant a new technological starting point. The great catalyst for the change from a world of 3D materials to a world of 2D materials, was the greatest crisis in history that took place in the 2020s. That was the date of molecular nanotechnology application in everyday settings.


Molecular Identification

The strict international laws for the protection of people and their economy, still in force, do not allow people to go out on the street without a molecular identification based on "thiophene". This real-time health passport on individuals, has enabled us to protect us from viruses for centuries and will continue to do so.

It seems unbelievable, that only the photons on their heavy silicon plates will take advantage. We currently use the 4 elements of nature, all renewable and basis of our progress.

We use the "graphene", to capture gravitational waves with quantum sensors and to create energy. We use "Molybdenum disulfide", as a base to isolate hydrogen and also to generate osmotic energy in all of our rivers.

Wonder Material

Energy Efficiency

Thanks to "Van der waals crystals", such as the "tungsten disulfide", the "transition metal dichalcogenides" and the "wonder material", we can make multi-layer solar panels with an efficiency of the 88%. The capture of the entire light spectrum thanks to 2D materials was revolutionary for energy efficient targets.

Aerographene® / Aerografito®

Lightest Materials

Current wind turbines based on "aerographene" and "aerografito", in addition to protecting the inhabitants of Mars from cosmic rays in their homes, here on the Earth, generate energy with the flapping of a butterfly being the lightest material on the Earth for over 200 years.

The ideal technique for mass production of two-dimensional crystals, was not discovered until 2020, when Japanese scientists isolated "white graphene" in the sizes required by the technology industry for the mass development of 2D materials. This discovery was the beginning of the end for the silicon.

Tungsten Diselenide

Machine Learning

The first neural chips that we currently use based on "tungsten diselenide", were developed by M.I.T. engineers also in the 2020s. The possibilities of machine learning and deep learning brought with them unthinkable powers of calculations for science.

Perfect quantum, twistronics, optoelectronics, piezoelectronics, spintronics, valleytronics, ferroelectrics, dielectrics, topologics, superconductors and zero power, zero friction materials; which supposed a whole range of matter such as the control of the "2DTMDCS", "MoS2", "MoSe2", "WSe2", "WTe2", "TiSe2", "ReSe2", "In2Se3" among others; the atomic crystals of "h-BN" and the 2D polymers of "C4H4S". All the materials have been essential to build the ship with which we travelled to Mars the first time and today we inaugurate our colony on the red planet.

200 years ago, we could travel at 30,000 kilometers per hour. Nowadays, we do it at 0.1% of the speed of light and thanks to electromagnetic shields, we can protect ourselves from cosmic dust lethal at those speeds.

We have inhabited the Moon for more than 100 years, the base of all galactic explorations and the neuralgic center of large corporations. In the lunar R&D centres, work is currently underway on the distortion of gravity and the capture of energy dark, but that's another story...

"It is clear, that the future of humanity passes through the control of atomic materials. The biomarkers for disease prevention, molecular and neuronal regeneration, will be essential to achieve great biological progress and take humans beyond 100 years. All the atomic materials will be decisive in reaching this milestone, because each one has its ideal molecular reaction and its corresponding natural application".


Our Trademarks

Trademarks, are particularly important in the globalized technological sector and are key to its further development.

Publigraphene®, thanks to its registered trademarks, possesses a unique intellectual property on a global scale regarding issues such as Graphene® & Grafeno® as well as in other 2D materials. The massive development of Publigraphene® intellectual property will create the world's best-known company in the field of Graphene® & Grafeno® and other 2D materials.



Graphene Telecom™

Graphene Energy™

Graphene Solar™

Graphene Optic™

Graphene University™




Main Domains

Custom domains are necessary to help your customers find you. Publigraphene®, thanks to its registered domains, possesses the world's best portfolio on Graphene® and two-dimensional materials.

Other Domains


5.000€ / Domain

Publigraphene has the best domain in the world for your company

More Information


Wonder Material


Oxido de Grafeno


Constructing graphene grain boundaries to control graphene plasmons

Unlock graphene's potential with high-quality CVD graphene production

Mixed auto plastics turned into circular graphene

Plasmonic optical tweezers with a multitude of applications

Graphene-Wrapped molecular-sieving membrane effectively separates hydrogen from methan

Graphene-based MPW run

Graphene-Based composite coatings inspired by nature

Graphene–oxide interface for optoelectronic synapse application

Strain induces pseudo-electromagnetic fields to guide electron motion in graphene

Strain induces pseudo-electromagnetic fields to guide electron motion in graphene

Printed electrodes and sensors possible with graphene ink

Graphene-coated gold electrodes for anticorrosion in wearables

The use of graphene solar thermal films

Atomically-Thin graphene coatings could transform liquid electronics

Graphene and an intense laser open the door to extreme energetic ion acceleration

3D arrangement of graphene enables storage of larger quantities of hydrogen

Graphene foam and boronic acid combine for accurate glucose sensor

Forming crystalline graphene quantum dots from agro-waste

Graphene nanotube concentrate streamlines painting of thermoplastics

Tumor targeting diagnostic agent developed from graphene QD

Touchscreen tech swaps rare metal for graphene, with no performance drop

Graphene nanoribbon breakthrough could lead to high-speed, low-power nanoscale data storage

Xiaomi: unveils latest flagships in Mainland China–Xiaomi 12 Series

Seven ways graphene-based sensors can improve electric vehicle battery testing

Researchers achieve precision sieving of gases through atomic pores in graphene

Growing crystals with graphene and single atom catalysts

Using graphene to purify seawater

Graphene nanoribbon edge defects unveil potential to manipulate optical properties for nano-imaging

Rheology of graphene and carbon nanotube-enhanced PLA

Developing wafer-scale highly oriented graphene on sapphire

3D Super-elastic graphene-based aerogels prepared with atmospheric drying

Graphene oxide for new generations of batteries and supercapacitors

Low temperature electrical resistance in super thin graphene

Nanomaterial 'aerographene' used to create extremely powerful pumps

Copper acetate-facilitated direct growth of wafer-scale high-quality graphene

Scientists use graphene sheets to improve lab-on-chip diagnostic tests

Graphene research sounds out new possibilities for electronic technologies

Researchers observe interband collective excitations in twisted bilayer graphene

Researchers demonstrate graphene-based nanoelectromechanical periodic array with tunable frequency

Edgy light on graphene may bring new one-way information routers

Space habitats for life beyond earth revealed as Manchester takes next graphene-enhanced leap

Can Graphene, a one-atom thick ‘Wonder Material,’ keep precious artworks from fading? Scientists say it shows promise

Foxconn partners with Appear Inc. for new graphene fast-charge battery technology

Indian Institute of Tech, Max-Born Institut Team Say Graphene Valleytrionics Could Enable Room Temperature Quantum

UK building road with “wonder material” graphene

Quantum materials cut closer than ever

UNSW scientists solve decade-old graphene oxide puzzle

UK government calls for security review of graphene firm’s takeover by Chinese academic

Graphene used as an additive in polymer applications

Functionalized graphene platforms for anticancer drug delivery

New type of graphene paves the way for sustainable sodium batteries

Atomically-thin, twisted graphene has unique properties

Scientists created the most perfect graphene yet

Two-faced graphene offers sodium-ion battery a tenfold boost in capacity

Graphene: Could a ‘wonder’ coating kill coronavirus in hospitals, on masks and even in your car?

Using graphene foam to filter toxins from drinking water

Graphene binds drugs which kill bacteria on medical implants

Food waste: how graphene can solve a growing global crisis

Graphene tech: Fighting the pandemic with smart tech

Super-thin Graphene is being tested on road surfaces

New process creates fluorinated nanodiamonds, graphene and concentric carbon

Nobel Laureate Andre Geim heralds the ‘2D Materials Age’ at global innovation summit

Scientists capture real-time electrical activity of a beating heart using graphene 'camera'

Graphene Superconductors May Be Less Exotic Than Physicists Hoped

Graphene could allow hard drives to hold 10 times more data

Another step on the road to graphene mass production

Dominant factor of carrier transport mechanism in multilayer graphene nanoribbons revealed

Graphene-based nanozyme helps to detect L-cysteine in serum

Sparc Technologies closer to commercialising graphene-based environmental remediation technology following US patent

New stiffened graphene could pave way for novel applications

Brisbane’s GMG says new aluminium battery can charge 20 to 60 times faster

New atomically precise graphene nanoribbon heterojunction sensor developed

Graphene-Based tracking system may streamline autonomous vision

Magnetic mono-layer boosts graphene spintronics

Graphene key for novel hardware security

Like a Trojan horse, graphene oxide can act as a carrier of organic pollutants to fish

Purifying water at scale with 3D-printed graphene aerogels

A path to graphene topological qubits

Brisbane-based tech firm and University of Queensland team up to transform energy storage

Graphene beam splitter gives electron quantum optics a boost

Engineers have developed the world’s first fully recyclable printed electronics

Sparc Technologies graphene-based adsorptions materials again effective against PFAS contaminants

Study sheds new light on Graphene interface properties at microscopic levels

Electrons in twisted graphene ‘freeze’ when heated

Identification of the wettability of graphene layers at the molecular level

3D-printed graphene aerogel makes efficient, scalable water filter

Graphene: Everything under control in a quantum material

Graphene 'smart surfaces' now tunable for visible spectrum

Wafer-scale production of graphene-based photonic devices

Archer Materials strengthens graphene-based biochip nanofabrication capabilities

Sparc Technologies unveils ‘outstanding’ anti-microbial results using graphene additives in coatings

A new twist reveals superconductivity’s secrets

New techniques for continuous large-scale production of 2D nanomaterials

Graphene-enhanced primer proves efficient for marine applications

Terahertz imaging of graphene paves the way to industrialization

The first graphene-enhanced concrete hits the market

Radionuclide removal using graphene oxide

Why doped graphene is the key to neutrino energy solutions

Building bridges between atoms and making catalysts of high quality

Sparc Technologies demonstrates ‘significant’ recovery of gold and silver using graphene-based tailings treatment

3D printing perovskites on graphene makes next-gen X-ray detectors

Graphene “Nano-Origami” creates tiniest microchips yet – could make computers and phones thousands of times faster

A magnetic twist to graphene

Wafer-scale production of graphene-based photonic devices

Newly discovered graphene property could impact next-generation computing

Harvard scientists trilayer graphene breakthrough opens the door for high temperature superconductors

Ingenious 'Wrinkled' graphene could be the most promising water filter yet

Video: Microfluidic method pumps out graphene micromotors

Self‐folding 3-D photosensitive graphene architectures

Scientists see competition of magnetic orders from 2D sheets of atoms

New material system developed to convert and generate terahertz waves for tomorrow’s technologies

Ultrasensitive microwave detector developed – enabling technology for next-generation quantum computers

Graphene: The building block for sustainable cities

Paragraf drives electric transport revolution with graphene sensors

Twisted graphene could power a new generation of superconducting electronics

Nanotech energy: graphene-based batteries for revolutionary energy storage

New family of quasiparticles discovered in graphene-based materials

A Physics Magic Trick: take 2 sheets of carbon and twist

11 ways graphene could change the world

Graphene Flagship: NEWS

Multifunctional porous carbon fibers show significant promise in capacitive desalination

Exploring new paths to future quantum electronics

Graphene-infused material could be the cornerstone of next-gen smart sensors

Graphene and 2D materials could move electronics beyond 'Moore's Law'

How to perform liquid-phase exfoliation on graphene

Paragraf partners with CERN to demonstrate unique properties of Paragraf’s new graphene hall effect sensor

Aerosol-printed graphene unveiled as low cost, faster food toxin sensor

Cascade sets the stage for superconductivity in magic-angle twisted bilayer graphene

Ultrasonic technique discloses the identity of elastic constant of graphite crystal

Dash of graphene leads to "toughest" solid battery electrolyte to date

Graphene smart textiles developed for heat adaptive clothing

Aerosol jet printing used to produce low-cost graphene food toxin sensor

Polymer films made from graphene

Enhancing performance of PSCs with ‘Graphene Armor’

Scientists approached the creation of a quantum computer, “catching” graphene electrons

"Graphene armor" protects perovskite solar cells from damage

Contest between superconductivity and insulating states in 'magic angle' graphene

Adhesive tape and graphene triple the life of lithium metal batteries

Thermal manipulation of plasmons in atomically thin films

Global graphene2d materials and carbon nanotubes market 2025 to expect maximum benefit and growth potential during this covid 19 outbreak: 2d carbon (changhzou), abalonyx, advanced graphene products, aist, alpha assembly, amo

Researchers have developed clean energy from graphene for the first time

Scientists find path to nanodiamond from graphene

Graphene based computer modeled after the brain to handle big data

China shops for graphene clothes for PLA soldiers at Ladakh border, flaunts it

Layer-engineered large-area exfoliation of graphene



White Graphene


Laser oxidation-a new approach to tuning the optical third-order nonlinearity of boron nitride

Delivering 2D materials ready for a “More than Moore” world

Graphene hBN advancement boosts quantum device development

New approach helps exfoliate hexagonal boron nitride nanosheets

Bumps could smooth quantum investigations

Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)

How do boron nitride layers improve energy storage in polymer composites?

Physicists study optically induced quantum dynamics in single-photon emitters

Tapping mode AFM reveals Moiré modulation of hBN van der Waals potential

Single-Photon source opens door to practical QKD

An overview of Graphene hall effect sensors

New 3D thermal management network could increase the safety of electric car batteries

New single-photon source paves the way for practical applications of quantum technology

Watching iron rust produces new insights on corrosion

Could 2D material borophene be used for optical devices?

Physicists find direct evidence of strong electron correlation in a 2D material for the first time

Growing wafer-scale 2D materials

Development of a diamond transistor with high hole mobility

Breakthrough in storage of quantum information taken by University of Cambridge and UT Sydney in Australia

New 2D material could store quantum information at room temperature

NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices

Tiny materials lead to a big advance in quantum computing

Groundbreaking light sources can increase effectiveness and security of transferring quantum information

Using defects to turn inert materials into useful, active ones

Fractional Chern insulators in magic-angle twisted bilayer graphene

Development of a transparent and flexible ultra-thin memory device

A valley of opportunities: delving into graphene's perplexing non-local response

Can defects turn inert materials into useful, active ones?

Scientists synthesize large borophene crystals

Industry News: Ultrasharp patterning of layered materials

Photon-Phonon combination will enable multi-technique spectroscopy advances

Why PPK (ASX:PPK) and Li-S Energy are this fund’s largest positions

Hexagonal Boron Nitride market 2021 by top players, growth, trends, size, share, analysis and forecast to 2028

One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM

Physicists engineer new property out of 'white' graphene

Choosing proper substrates to grow single crystals of 2D materials

Advanced ferromagnetic tunnel junction using two-dimensional hexagonal-BN

Can A Piece Of Sticky Tape Stop Computer Hackers In Their Tracks?

Engineers create double layer of borophene

Zhejiang University: 2D sieving structure for DNA sequencing

Power/Performance Bits: Aug. 9

Qubit in a crystal lattice of boron nitride is a suitable sensor

WPI-MANA achieves direct growth of Germanene, marking major step for electronic device fabrication

‘Slidetronics’ makes its debut

Stronger than ever, boron and this upstart explorer should be on every investor’s radar

Control over water friction with 2D materials points to 'smart membranes'

In a nano-optics breakthrough, researchers observe sound-light pulses in 2D materials (w/video)

New method to improve durability of nano-electronic components

Hexagonal Boron Nitride’s incredible toughness unmasked – “What we observed … is remarkable!”

Nanohybrids for targeted control of infection hotspots created in Russia

Zero-carbon energy from sea water a step closer

Control over water friction with 2D materials towards ‘smart membranes’

Materials breakthrough enables twistronics for bulk systems

Flash Memory's 2D Cousin is 5,000 Times Speedier

KTH Royal Institute of Technology Researchers develop new light emitters for quantum circuits

Spin defects under control: Improved materials for quantum sensor technology

Superlattice electromechanical characterization with piezo-response force microscopy

SMART breakthrough in materials discovery enables 'twistronics' for bulk systems

Abandoning the old ways: Progress in the low-cost electrochemical synthesis of ammonia

WPI-MANA team demonstrates new laser-assisted non-volatile memory based on 2D van-der-Waals heterostructures

Photonics discovery portends dramatic efficiencies in silicon chips

Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering

Localization of lattice dynamics in low-angle twisted bilayer graphene

Smaller, more powerful devices possible with new technique

A little soap simplifies making 2D nanoflakes

New nanomaterial a key step toward hydrogen as a stable and clean fuel source

Using nanoscale IR spectroscopy to characterize 2D materials

A 2-D perspective: Stacking materials to realize a low power consuming future

Physicists devise a brilliant way to make and observe elusive electron crystals

Scientists reveal new synthesis mechanism of hexagonal boron nitride

High-quality BN grown at atmospheric pressure

Artificial fog helps lasers shine brighter

Misalignments in encapsulated graphene lead to strong modification of electronic properties

Spin-dependent processes in the 2D material hexagonal boron nitride

New 5G switches mean battery life improvements, higher bandwidth and speeds

Study shows protons tend to move along interface between two mediums

Atom-Thin switches could route 5G and 6G radio signals

Polyethylenimine-assisted exfoliation of h-BN in aqueous media

Coronavirus (COVID – 19) imapct on global HBN market 2020 analysis by top players | Saint-Gobain, Momentive, 3M company, H.C.Starck, UK Abrasives, Denka, Henze, Showa Denko Group

Researchers create 2D devices through mere rubbing

Hexagonal boron nitride composite ceramics, market set to register robust CAGR during 2020-2026

Amorphous boron nitride discovered with potential use in chips

Graphene sensors find subtleties in magnetic fields

Subtleties in Magnetic Fields Detected by Ultrathin Graphene Sensors

Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride

Graphene-based Josephson junction microwave bolometer

Devil in the defect detail of quantum emissions unravelled



Transition Metal Dichalcogenides

Dry pick-and-flip assembly of van der Waals heterostructures for microfocus angle-resolved photoemission spectroscopy

Valleytronics researchers fabricate novel 2D material enjoying long-life excitons

Extending excitons’ life

New 2D materials could be the key to high-capacity batteries

TSMC commits to nanosheet technology at 2nm node

Presenting exciton theory in atom-thin semiconductors

Improved NRR electroactivity by MoS2-SnS2/poly(zwitterionic liquids)/polypyrrole/graphene oxide

Tunable quantum traps for excitons

On-Chip photodetection: 2D material heterojunctions for “Post-Moore Era” microelectronics

3D Printing catalytic electrodes for electrochemical applications

Highly tunable graphene-semiconductor vdW heterostructures

New fabrication method for di-indium tri-sulfuric (In2S3) thin films

Synthesis, properties and applications of 2D materials beyond graphene

Scientists use light to trigger magnetism in nonmagnetic material

Nanospectroscopy tool shows promise in twistronics applications

Transition Metal Dichalcogenides show promise in nanophotonics

Picosecond energy transfer in a transition metal dichalcogenide–graphene heterostructure revealed by transient Raman spectroscopy

An efficient electrochemical intercalation method for high-yield production of TMD nanosheets

Physicists engineer ferroelectricity into well-known family of semiconductors

Biodegradable implant could help monitor brain chemistry

New strategy to enhance single photon emitters for quantum photonics

DST-INSPIRE Faculty fellow working on doping techniques for monolayer and bi-layer 2D-semiconductors

Breakthrough in quantum sensing provides new material to make qubits

Bonding exercise: quantifying biexciton binding energy

Layered materials for energy generation and heat pumps

Advancing nano-imaging using 2D materials

Accelerating development of advanced devices based on van der Waals crystals

Robotic production line gives 2D materials a twist to produce multilayer structures

Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field

The excellent heat dissipation properties of layered semiconductors revealed down to one layer

Study shows that monolayer tungsten ditelluride is an excitonic insulator

New biocompatible, fast-acting antifungal nanomaterial

Photoexfoliation of quantum two-dimensional (2D) materials

Biomedical applications of transition metal dichalcogenide nanozymes

Stanford University researchers say ultra thin solar cells could create longer battery life

A New 0.4-MM-Thick 'Paper Battery' can power a small fan for 45 minutes

Electric fields make a ‘tuning knob’ for solid-state systems

Flexible metal dichalcogenide solar cell with 5.1% efficiency

Dion-Jacobson perovskite solar cell with 18.82% efficiency

Ultrathin solar cells get a boost

Excitons and emergent quantum phenomena in stacked 2D semiconductors

Researchers propose new mechanism for mass production of chips using transition metals

How fast does sound travel through 2D materials? It depends on how their layers stack

Study of crystal-orientation dependence of harmonics in transition-metal dichalcogenides

Quantifying spin in WTe2 for future spintronics

Optical inspection of graphene and other 2D materials

Electrical control over designer quantum materials

Is tin disulfide an effective material in supercapacitors?

Transition Metal Dichalcogenides (TMDC) market 2021-2028: major trends and key developments | Rose Mill Co., 3M Company, BryCoat, Inc.

Twisted-angle dependent exciton in heterobilayer of transition metal dichalcogenides

Zhongwei Dai: Exploring the strange quantum world of 2D materials

A new twist on 2D materials may lead to improved electronic, optical devices

Single-atom-thick semiconductor sandwich is a significant step toward ultra-low-energy electronics

This is what a solid made of electrons looks like

The first glimpse of hydrodynamic electron flow in 3D materials

Quantum criticality in twisted transition metal dichalcogenides

Spin photovoltaic effects in magnetic van der Waals heterostructures

Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers

Deciphering asymmetric charge transfer at transition metal dichalcogenide–graphene interface by helicity-resolved ultrafast spectroscopy

This exotic particle had an out-of-body experience; These scientists took a picture of it

Exploring the limits of the combination of light and matter on the nanoscale

Scientists shuffle atomic layers like playing cards to make new quantum materials

New 2D alloy combines five metals, breaks down carbon dioxide

New combination of materials provides progress toward quantum computing

NSF renews funding for Two-Dimensional Crystal Consortium

Light-emitting MXene quantum dots

Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity

Intersection of 2D materials results in entirely New materials

Transition metal dichalcogenides get weaker when thickness decreases

Intersection of 2D materials results in entirely new materials

Building Reconfigurable Electronics with Van der Waals Heterostructures

Interlayer exciton formation, relaxation, and transport in TMDs van der Waals heterostructures

Global Transition Metal Dichalcogenides (TMDC) market 2020 by manufacturers, regions, type and application, forecast to 2025

Quantum dot array could make ultra-low energy switches

High-order superlattices by rolling up van der Waals heterostructures

Researchers tailor the interaction of electrons in an atomically thin solid

Promises and prospects of two-dimensional transistors

Molecular bridges power up printed electronics

Transition Metal Dichalcogenides (TMDC) market size and forecast (2021-2027) | by top leading players – 3M Company, Rose Mill Co., BryCoat, Micro Surface Corp., Atlantic Equipment Engineers, EdgeTech Industries, LLC

Vibrating 2D materials

Programmable hyperbolic polaritons in van der Waals semiconductors

Filming Phase Changes

Imec introduces 2-D materials in the logic device scaling roadmap

2D Semiconductor Materials Sales Market – Major Technology Giants in Buzz Again | Saint-Gobain, Momentive

Chemical scissors snip 2D transition metal dichalcogenides into nanoribbon

Visualizing Dark Excitons

Strain engineering of 2D semiconductor and graphene

How thin do you want your layered materials for maximum solar cell efficiency?

New 2D materials show promise for future electronic devices

Kick-starting Moore's Law? New 'synthetic' method for making microchips could help

Nanopatterning electronic properties of twisted 2D semiconductors using twist

Particles trapped in twisted materials and quantum fingerprints identified

Two-dimensional layers of gold or silver become semiconductors

Transition Metal Dichalcogenides (TMDC) market 2019 break down by top companies, countries, applications, challenges, opportunities and forecast 2026

Global Transition Metal Dichalcogenides (TMDC) sales and revenue market share by application / types (2015-2020) and forecast (2021-2026)

Measuring a tiny quasiparticle is a major step forward for semiconductor technology

Using chaos as a tool, scientists discover new method of making 3-D-heterostructured materials

This new heated micro-blade can cut 2D material with unmatched precision

Engineers invented a new way to store data using atomically-thin 2D materials instead of silicon chips

Manufacturing Bits: July 14

Experiments confirm light-squeezing 2-D exciton-polaritons can exist

New discovery from McGill could lead to improvements in the optical detectors used in solar cells

Phase engineering of Transition Metal Dichalcogenides with unprecedentedly high phase purity, stability

How sticky gold could “pull off” the next big thing in semiconductor technology

Kitchen-fridge temperature supercurrents from stacked 2D materials

2D materials grow directly on optical fibres

Chemical scissors snip 2-D transition metal dichalcogenides into nanoribbon


Molybdenum Disulfide

Photonic synapses with low power consumption and high sensitivity

Researchers develop AI technology that mimics the human eye

Large-area graphene-perovskite solar modules with better temperature coefficient

Activation of nitrogen species mixed with Ar and H2S plasma for directly N-doped TMD films synthesis

Atomically thin semiconductors for nanophotonics

New electrocatalyst offers hope for less expensive hydrogen fuel

Microfluidics and nanomaterials for energy storage applications

Alfa chemistry: printing inks are perfect for organic and printed electronics

Machine learning-based optimization of chiral photonic nanostructures: evolution- and neural network-based design

Scalable approach to fabricate memristor arrays at wafer-scale

6G Component Provides Speed, Efficiency Needed for Next-Gen Network

Intermediate-state imaging of electrical switching and quantum coupling of molybdenum disulfide monolayer

Thermal and mechanical characterization of nanoporous two-dimensional MoS2 membranes

Biomolecule detection in biofluids made flexible in new research

New transistors integrating high-k perovskite oxides and 2D semiconductors

Korea develops wireless brain neurochemical system to study Parkinson’s disease

Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire

Mg-Li battery-suitable highly dispersed MoS2 nanoflowers created

Transparent and flexible passivation of MoS2/Ag nanowire with sputtered polytetrafluoroethylene film for high performance flexible heaters

Supercomputing, paper cutting underpin stretchable electronics research

MoS2-Wrapped SWNTs synthesized with space-confined method

Eco-Friendly method to create customizable multifunctional MoS2 nanocomposites

Ancient art meets AI for better materials design

Advancements in nanotechnology and their impact across multiple areas of human health

Neuromorphic chip integrated with a large-scale integration circuit and amorphous-metal-oxide semiconductor thin-film synapse devices

New, more sustainable catalyst developed for fine chemicals industry

SLM-processed MoS2/Mo2S3 nanocomposite for energy conversion/storage applications

Disease diagnosis through 2D nanomaterial-based breath sensors

Nanoribbons boost hydrogen sensing for rapid detection of gas leaks

Vertical MoS2 transistors with sub-1-nm gate lengths

Laser-Fabricated 2D molybdenum disulfide electronic sensor arrays for rapid, low-cost, ultrasensitive detection of influenza A and SARS-Cov-2

Retina-inspired sensors for more adaptive visual perception

NGI uses twist to engineer 2D semiconductors with built-in memory functions

Core-shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples

Ultrathin films for stretchable and sturdy bioelectronic membranes

MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production

Erythrocyte membrane-enveloped molybdenum disulfide nanodots for biofilm elimination on implants via toxin neutralization and immune modulation

Simple method to improve high-k dielectric integration for 2D electronics

Transparent ultrasound chip improves cell stimulation and imaging

How to design a sail that won’t tear or melt on an interstellar voyage

Innovative reflective materials to accelerate space probes light years away

Understanding conductivity in printed films for flexible electronic devices

Modified gold nanoparticles improve photodetector performance

Emerging nanomaterials-based biosensor for detecting SARS-CoV-2

'Significant breakthrough' in bionic eye development

2D Semiconductors stalk Silicon at the edge of Moore’s Law

Rice University: Nickel’s need for speed makes unusual nanoribbons

Hole doping effect of MoS2 via electron capture of He+ ion irradiation

2D material sensor ‘detects cancer with 70% fewer cells than other electronic sensors’

A two-dimensional outlook

Creating a 2D transistor from inorganic molybdenum disulfide

Plasma assisted chemical vapor deposition to grow graphene on MoS2 substrates

Researchers identify ultrafast dynamics in monolayer MoS₂/ReSe₂ heterostructures

Controlling environmental pollutants with heterogeneous catalysts

The highest amplification in tiny nanoscale devices

Atomic scale “Lasagna” controls heat flow at the nanoscale

Electrospun PCL/MoS2 nanofiber membranes combined with NIR-Triggered photothermal therapy to accelerate bone regeneration

Anisotropic thermal conductors to solve electrical component overheating

UChicago scientists create material that can both move and block heat

PolyU develops groundbreaking and highly effective targeted osteoarthritis pain reliever

Hidden particle interactions exposed by peeling layers of graphene

The future of thermoelectric energy harvesting

Groundbreaking visualization of atomic movements

Molten salt metal-air batteries may be the successor to lithium-ion batteries

Electrical characterization of 2D transition metal dichalcogenides via SPM

Composite piezoelectric materials extracted from common waste products

Ultrathin semiconductors are electrically connected to superconductors for the first time

Stanford’s breakthrough new manufacturing technique for ultrathin, flexible electronics

Proliferation of EVs based on high-performance, low-cost sodium-ion battery

Stanford researchers develop new manufacturing technique for flexible electronics

Changing a 2D material's symmetry can unlock its promise

Lab peers inside 2D crystal synthesis

Resourceful solid-state nanopores: From blue energy production to big data processing

Molybdenum disulfide vertical transistors with channel lengths down to one atomic layer

New class of hydrogels can enable precise drug delivery

Bharat Ratna professor rao receives prestigious international award in energy research

New printable electronic circuits could lead to lower-cost wearables

Advance may enable “2D” transistors for tinier microchip components

Ultralow contact resistance between semimetal and monolayer semiconductors

NUS scientists create a new type of intelligent material

New water-based approach to manufacturing semiconductors

What is MoS2 powder and its performance

KIST develops new batteries 40% cheaper, stronger than lithium-ion batteries

Scientists now able to map defects in 2D crystals in liquid

IIT Mandi develops anti-bacterial material for face masks & PPE equipment

Taiwan develops biosensor to screen fetal Down’s Syndrome

Reactive molecular dynamics reveals fundamental mechanism of resistive switching in 2D materials

Nanomaterials support water treatment with industrial waste – summaries

Molybdenum disulphide, a new carbon capture catalyst

IC design: going back to 2-D?

Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure

2D Heterostructures Rolled Like Sushi May Lead to Ultra Miniaturized Electronics

Instrument at BESSY II shows how light activates molybdenum disulfide layers to become catalysts

Spintronic computing breakthrough: Taking 2D materials for a spin

Molybdenum disulfide ushers in era of post-silicon photonics

Process adds graphene and 2D materials to semiconductor lines

A scalable method for the large-area integration of 2D materials

Transistors built from ultra-thin 2D materials take a step forward

From heat to spin to electricity: Understanding spin transport in thermoelectric devices

Laser-writing method quickly converts a single starting material to circuit components

Rice 'flashes' new 2D materials

2D material controls light twice stronger

Atom-thin transistor uses half the voltage of common semiconductors, boosts current density

Light-Based tool may lead to advanced energy technologies, quantum computers

USP and Unesp produce technology that eliminates dye and carcinogenic metal from water

World’s smallest atom-memory unit created

2D material helps next-gen computer chip store, process data like neurons

Researchers obtain atomically thin molybdenum disulfide films on large-area substrates

The superpowers of super-thin materials

Producing electricity at estuaries using light and osmosis

Twisting 2-D materials uncover their superpowers

Ferromagnetic semiconductor could be used for quantum bits applications

Development of electrode material improving the efficiency of salinity gradient energy

Ultrafast optical response and ablation mechanisms of molybdenum disulfide

Mohali institute develops new laser tech for making nano-structures

Texas A&M researchers light cells using manosheets for cancer treatment

Oil-free, nanoscale solid lubricant creates ultra-slippery layer between sliding surfaces in machinery

Process for 'two-faced' nanomaterials may aid energy, information tech

The superiority of single-layer molybdenum disulfide for water desalination

How to cut atom-sized 2D materials

Active-matrix organic light-emitting diode display on human skin

Metal-breathing bacteria could transform electronics, biosensors, and more

'Etch-a-Sketching' critical p-n nano-junctions for 2D Semiconductor diode

A new process for precision perforation of material layers

Highly sensitive dopamine detector uses 2D materials

A highly light-absorbent and tunable material

New wearable gas sensor based on reduced Graphene Oxide/MoS2 composite

First 2D neural network

The right formula for scaling production of promising nanomaterial to decontaminate water

Development of haptic touch sensor that works by static electricity

The art of making tiny holes: processing surfaces on an atomic scale

World’s first graphene-enabled perovskite solar farm trial up and running

An innovative pattern: scientists rewrite rules for 2D electronics

New method to synthesize and exfoliate 2D semiconductors

Can two-dimensional semiconductors created using liquid metals forestall Moore’s law's demise?

Shedding light on moiré excitons: A first-principles perspective

Flexible and transparent electronics fabricated using a two-dimensional semiconductor

Research lays groundwork for ultra-thin, energy efficient photodetector on glass

Low friction coatings market segmentation by qualitative and quantitative research incorporating impact of economic and non-economic aspects by 2027

Tailoring 2D materials to improve electronic and optical devices

Imitating the brain to make computers more efficient


Molybdenum Diselenide


Molybdenum Ditelluride

Tungsten Diselenide

New combination of materials provides progress toward quantum computing

Stacking 2 2D materials in solar cells makes for super powerful performance

‘Twisting’ atomic materials may convert light into electricity

CCNY team makes single photon switch advance

Experimental measurement of the intrinsic excitonic wave function

Foldable solar cell can be bent perfectly more than 10,000 times without breaking

Switching nanolight on and off

Tungsten Diselenide industry market size 2020 demand, global trend, news, business growth, top key players update, business statistics and research methodology by forecast to 2027

Biological Systems Inspire Image Preprocessing Solutions

Atoms-thick transistors get faster using less power

Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2

Neural hardware for image recognition in nanoseconds

A new design strategy to fabricate 2-D electronic devices using ultrathin dielectrics

Physicists' finding could revolutionize information transmission

Transistor sets a new standard for energy efficiency

Observation of intervalley transitions can boost valleytronic science and technology

Tungsten Diselenide to exhibit healthy growth through forecast period; market likely to mitigate COVID-19’s financial impact

Novel "dual-resonant method" in 2D materials can spur advances in the field of photonics

Tech: Tiny bubbles make a quantum leap

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

New reconfigurable circuits for a wide range of applications

Nanophysics: Spectral classification of excitons

Anisotropic plasmons in quasi-metallic 2-D materials

Global Tungsten Diselenide market report to cover industrial chain analysis, manufacturing cost structure, process analysis


Alignment of quantized levels in valleytronic materials

Lithography-Free process to make quantum emitters for 2D semiconductors

p-type 2D transistors mean atomically-thin CMOS is not far away

Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light

Researchers employ van der Waals heterostructures for nano-opto-electro-mechanical devices

Tunable nanophotonic interface simplifies PIC integration

Ultra-compact integrated photonic device could lead to new optical technologies

Structure of the moiré exciton captured by imaging its electron and hole

2D semiconductors make progress, but slowly

ARPES gives first observation of dispersive excitons in a low-dimensional metallic system

‘Exciton surfing’ could enable next-gen energy, computing and communications tech

Reversible tuning of excitons possible with nanogap device

'Crazy' light emitters: Physicists see an unusual quantum phenomenon

A New Flexible Solar Cell Approach with 2D Transition Metal Dichalcogenides

Magnetic surprise revealed in “Magic-Angle” graphene – potential quantum computing applications

New solar materials developed by Stanford scientists could usher in ultrathin, lightweight solar panel

Transition metal dichalcogenide solar cell with 5.1% efficiency

Ultra-thin crystals as light sources in lasers

Strongly correlated excitonic insulator in atomic double layers

With a little twist, researchers delve into a quantum physics puzzle

Physicists snap first image of ‘ice’ purely made of electrons

Monolayer strain sensor sets new record

Effect of electrons with negative mass in novel semiconductor nanostructures

Auburn University engineers create device that instantly reveals COVID-19 test results

Researchers realize spin field effect transistors at room temperature

Single photon switch advance: “Rydberg States” in solid state materials

New study presents tip-induced nano-engineering of strain, bandgap, and exciton funneling in 2D semiconductors

Kitchen temperature superconductivity from stacked 2D materials

Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors

Building a quantum network one node at a time

Programmable electronics based on the reversible doping of 2-D semiconductors

Physicists devise a brilliant way to make and observe elusive electron crystals

Technion makes revolutionary light source on single atomic layer

Direct-write quantum calligraphy in monolayer semiconductors

Chips hit a new low with 'Valleytronics'

Saving Moore’s law

2D semiconductors found to be close-to-ideal fractional quantum hall platform

2D semiconductors found to be close-to-ideal fractional quantum hall platform

Scientists observe fractional quantum hall states in monolayer 2D semiconductors

Electronics tuned in twisted bilayer graphene

Can nanotechnology help us combat future pandemics?

Korean team makes 2D light-emitting FETs

Electrical control of the “Valley”

Kitchen-temperature supercurrents from stacked 2-D materials

Do the twist: Making two-dimensional quantum materials using curved surfaces

Building a quantum network one node at a time

Tungsten Disulfide

On route to 3D printing with atomic resolution (w/video)

Sensing of C-Reactive protein using an extended-gate field-effect transistor with a tungsten disulfide-doped peptide-imprinted conductive polymer coating

LED development twists light in quantum computing breakthrough

Tungsten Disulfide market to witness robust expansion by 2028 | Rose Mill Co., BryCoat, Inc.

Physicists take first image of a solid made of electrons

Ultra-short or infinitely long: It all looks the same

Future of quantum information processing: Twisting light that switches direction at room temperature

LED material shines under strain

Tungsten Disulfide market size and growth 2021-2028 | Key players – Rose Mill Co., BryCoat, EdgeTech Industries, LLC, Micro Surface Corp., Atlantic Equipment Engineers, ALB Materials, Skyspring Nanomaterials

Imec builds working forksheet transistors for 2nm, 1nm

Folding 2D materials gives them new properties useful for quantum communications – new research

'Target identified': teaching a machine how to identify imperfections in 2D materials

Tungsten Disulfide to flourish with an impressive CAGR during 2021-2030

Moiré patterns facilitate discovery of novel insulating phases

Ultra-Fast Gas Flows Through Tiniest Holes in One-Atom-Thin Membranes – Validates Century-Old Equation of Fluid Dynamics

'Valley states' in this 2D material could potentially be used for quantum computing

Petronas considers investing 400 million USD in a new lubricants plant, the use of Tungsten Disulfide as the best oil additive will increase significantly

Tungsten Disulfide helps organic solar cell reach 17% efficiency

Exciton resonance tuning of an atomically thin lens

World coronavirus dispatch: Tungsten disulfide nanoparticles market insights analysis 2019-2025

When imaging atoms, blurrier is better

Thirsty Bird (SK, Canada) Unveils New Nanotechnology-based Line of Industrial Fluids & Lubricants

Tungsten Disulfide Nanoparticles Market 2020 | Strategic Assessment by Top Players like Tribotecc, American Elements, Nanoshel, EdgeTech Industries, Atlantic Equipment Engineers, ALB Materials, Skyspring Nanomaterials, Xinglu Chemical Technology, and More?

An electrical trigger fires single, identical photons

Shedding light on moiré excitons: A first-principles perspective

Tungsten Ditelluride


Titanium Diselenide


Van Der Waals Crystals


Tin Disulfide

Indium Gallium Arsenide



Portuetxe 51, 3º Oficina 311
20018 Donostia - San Sebastián


Drop us line

Contact Us